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In this report, we investigate whether the age of Haliotis Rubra (Black-
lip Abalone) can be estimated from external physical attributes. We con-
structed and evaluated two multiple linear regression models using the
Akaike Information Criterion (AIC). After refinement of the selected model,
we found that given two weights, three dimensions, and the sexual ma-
turity of an abalone, we could explain 62.8% of the the variance in our
target variable. Provided these measurements, predictions could in turn
be untransformed to generate age estimates for abalone.

1. Introduction

Marine biologists and conservationists often study the age and
growth patterns of a species in order to understand its demograph-
ics in and across various ecosystems. As a sought after commod-
ity within the fishing industry, this is especially true of Abalone.
However, the classical method for determining an abalone’s age
is arduous and time inefficient; counting the rings in a specially
prepared shell under a microscope (Dheeru Dua and Casey Graff
(2017)). We therefore aim to find a technique for estimating an
abalone’s age using only physical attributes which are easily and
quickly measured. We will construct a multiple regression model
in order to predict the number of rings an abalone has, and evalu-
ate whether this model can effectively predict observed values and
would therefore have any utility when applied to new observations.

2. Data Set

This data pertains to Haliotis Rubra, an Australian species of
abalone found predominantly in cold waters, such as off the coast
of Tasmania. The relevant data were originally collected by the
Marine Resources Division in Taroona, Tasmania to explore neural
network techniques for estimating the age of abalone. The data
were made available by the University of California Irvine Machine
Learning Repository(Dheeru Dua and Casey Graff (2017)). The
dataset contains 4177 observations upon 9 different variables, and
it contains no missing values. Each variable describes some physi-
cal property - a weight, dimension, sex, ring count - of the observed
abalone.

2.1 Variables.

Name Type Description

Sex Factor Male, female or infant

Length (mm) Continuous Longest shell measurement

Diameter (mm) Continuous Perpendicular to length

Height (mm) Continuous With meat in shell

Whole Weight (g) Continuous Whole abalone

Shucked Weight (g) Continuous Weight of meat

Viscera Weight (g) Continuous Gut weight (after bleeding)

Shell Weight (g) Continuous After being dried

Rings Integer Number of rings. +1.5 gives age in years

2.2 Outliers. Initial data exploration reveals two clear anomalies
in the height variable. These two observations are so far from the
range of all other 4175 observed values that they are considered
to be erroneous, and are discarded from the dataset.
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3. Analysis

3.1 Transformations. Prior to selecting an appropriate model, we
must acknowledge that the observed variables do not demonstrate
a linear relationship with the observed number of rings (Appendix
1), and we cannot consider sexual maturity in its current state as a
ternary factor. Due to the nature of the observed curves, the ideal
transformations for the predictor variables were as follows: Log
transformations for length, diameter, and all the weights, and a
square root transformation to height. Transforming the predicted
variable (rings) to the square root of its logarithm proved ideal.
Each predictor variable now adopts a linear relationship with the
predictive variable (Appendix 2), allowing for a linear regressive
model to work appropriately. Additionally, the sexual maturity
factor was encoded using a contrast matrix.

3.2 Model Selection. Having conducted our transformations, mod-
els could now be constructed. Two models were constructed; one
using forward stepping variable selection, and the other using
backward stepping variable selection. Both of these models were
evaluated considering their R2 and AIC values. The produced mod-
els were remarkably similar in regard to the above criteria, and the
only notable difference between them is the omission of diameter
and length from the forward model. The produced models are
shown in the table below.

Forward Model Backward Model

Predictors Estimates p Estimates p

(Intercept) 1.43 <0.001 1.45 <0.001
log shell 0.11 <0.001 0.11 <0.001

log shucked -0.19 <0.001 -0.19 <0.001
log whole 0.19 <0.001 0.20 <0.001
sex infant -0.02 <0.001 -0.01 <0.001
log viscera -0.03 <0.001 -0.02 <0.001
sqrt height 0.13 0.007 0.12 0.012

log diameter 0.07 0.005
log length -0.08 0.005

Observations 4175 1.45
R2/R2 adjusted 0.647 / 0.647 0.648 / 0.647

AIC -10882.310 -10887.886
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3.3 Assumption Checking.

Forward Residual vs Fitted/QQ Plot.
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Backward Residual vs Fitted/QQ Plot.
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We must state and justify our assumptions - for both models -
to validate any inferences made in our results.

• Linearity: The residual plot displays no obvious curvature for
either model, thus the linearity assumption is satisfied.

• Independence: The data were collected across 5 different
regions in the Tasman Sea (Appendix 3), with no systematic
or intentional collection grouping. Granted these facts, there
is no reason to believe there is any dependence between ob-
servations. Hence, independence can reasonably be assumed.

• Homoskedasticity: For both models, the residuals do not
appear to be fanning out or changing over the range of fitted
values. Thus the constant error variance assumption is met.

• Normality: The normality assumption is at least approxi-
mately satisfied. For the QQ plot of each model, the points are
reasonably close to the diagonal line. Regardless, the sample
size is large enough to rely upon the central limit theorem.

4. Results

Since the models constructed using the forward and backward
approach share the same adjusted R2, the Residual Mean Square
Error (RMSE) and Mean Absolute Error (MAE) were computed for
each in order to determine and justify the better model. Graphs
are shown below.
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It is evident that the backward model is the better model, as it
has a lower RMSE and MAE. It is worth noting that the p-values for
all the original variables are statistically significant, excepting one
of the sexual maturity factors produced from the dummy coding
contrast matrix. The p-value for sex_f was consistent with the
null hypothesis that the gender of the abalone is immaterial, while
sex_i was significant, indicating that the sexual maturity of the
abalone was meaningful.

It must be conceded that there is apparent multicollinearity
within the dataset (Appendix 4); which may reduce the precision
of the estimate coefficients and lessen the statistical power of the
model. This multicollinearity is to be expected. Living organisms
tend to grow physically as they age, with a rate that decreases over
time. Naturally, our measured values display that trend.

It is a challenge to address multicollinearity within a data set
where all the variables are significant. The optimal solution is
to omit collinear variables which are already well represented by
similar measurements. In our specific case, this was a number of
the weight variables. The two more significant weight variables -
according to the standardized regression coefficients - were shucked
weight and whole weight;

log whole log shucked log viscera log shell
1.4790451 −1.5000279 −0.1885621 0.8269786

log diam log length sqrt height sex infant
0.19408468 −0.19821088 0.06175294 −0.06326012

Thus the viscera weight and shell weight were ignored in our
final model;

Û

Æ

log(rings) = 1.330+ 0.297log(whole)− 0.243log(shucked)

+ 0.153log(diameter)− 0.079log(leng th)

+ 0.205
p

height − 0.013Sex in f ant

Our model can predict the square root of the log of the number of
rings with 62.8% explainable variance when using all the provided
variables, making for a respectable regressive model.

5. Discussion and Conclusion

We have constructed a model that will approximate an abalone’s
age from easily measured attributes - a useful tool when monitoring
large marine ecosystems, where research time is far better spent
collecting and analysing observations than counting rings.

5.1 Limitations.

• Our data only pertains to Haliotis Rubra. The model does
not account for species, and cannot claim to perform gener-
ally among Haliotes. Any conservational or environmental
inferences are thus limited.

• As noted above, there is high collinearity among the weight
variables, and together this reduces the usefulness of each.
It would perhaps be more profitable to forego one of these
measurements in favour of another that would add more
breadth to our profile of the abalone.

• The data were only collected from waters surrounding Tasma-
nia (Appendix 3). Although Blacklip Abalone is prevalent in
these waters, they are found in coastal waters reaching all the
way from lower NSW to lower WA. This restricts the useful-
ness of the model, since it can only be used with confidence
for Abalone in Tasmanian waters - a portion of a much larger
population.
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6. Appendix

Appendix 1: Correlation matrix of initial dataset
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Appendix 2: Correlation matrix of transformed variables
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Appendix 3: Data Collection Sites (Warwick et al. (1994))

Appendix 4: Correlation Matrix
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